Author:
Gong Yu,Jiang Linfei,Li Linkang,Zhao Jian
Abstract
Studies on mode II fracture have promoted the establishment of the delamination theory for unidirectional composite laminates at room temperature. However, under thermal conditions, the fracture behavior of composite laminates will exhibit certain differences. The delamination theory should be extended to consider the temperature effect. To achieve this goal, in this study, the mode II static delamination growth behavior of an aerospace-grade T800/epoxy composite is investigated at 23 °C, 80 °C and 130 °C. The mode II fracture resistance curve (R-curve) is experimentally determined. A fractographic study on the fracture surface is performed using a scanning electron microscope (SEM), in order to reveal the failure mechanism. In addition, a numerical framework based on the cohesive zone model with a bilinear constitutive law is established for simulating the mode II delamination growth behavior at the thermal condition. The effects of the interfacial parameters on the simulations are investigated and a suitable value set for the interfacial parameters is determined. Good agreements between the experimental and numerical load–displacement responses illustrate the applicability of the numerical model. The research results provide helpful guidance for the design of composite laminates and an effective numerical method for the simulation of mode II delamination growth behavior.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Young Elite Scientists Sponsorship Program by CAST
Chongqing Talent Plan
Foundation of the State Key Laboratory of Automotive Simulation and Control
Chongqing Natural Science Foundation
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献