Affiliation:
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. College of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
Abstract
Motivated by the need for a green and low-carbon economy, we explore the co-scheduling optimization of berths and cranes. Our aim is to balance the carbon tax and operating costs of ports under uncertain conditions, proposing an innovative nonlinear mixed-integer programming formulation. To address this optimization challenge, we have developed an enhanced version of the adaptive spiral flying dung beetle algorithm (ASFDBO). In order to evaluate the performance of the ASFDBO algorithm, we performed a benchmark function test and a convergence analysis with other recognized metaheuristics. In addition, we verified the practical applicability of the ASFDBO algorithm in different test scenarios. Through numerical experiments, we analyze the feasibility and effectiveness of the algorithm’s scheduling solutions and improvement strategies. Results indicate that our collaborative scheduling optimization, which considers both carbon and production costs, achieves feasible solutions and reduces carbon expenses. Finally, we investigate the impact of different carbon tax rates on the joint scheduling optimization of berths and quay cranes, and the results show that a reasonable carbon tax policy can effectively reduce the carbon emissions of ports.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献