A Capillary Computing Architecture for Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to Fog and Cloud Providers

Author:

Taherizadeh Salman,Stankovski VladoORCID,Grobelnik Marko

Abstract

The adoption of advanced Internet of Things (IoT) technologies has impressively improved in recent years by placing such services at the extreme Edge of the network. There are, however, specific Quality of Service (QoS) trade-offs that must be considered, particularly in situations when workloads vary over time or when IoT devices are dynamically changing their geographic position. This article proposes an innovative capillary computing architecture, which benefits from mainstream Fog and Cloud computing approaches and relies on a set of new services, including an Edge/Fog/Cloud Monitoring System and a Capillary Container Orchestrator. All necessary Microservices are implemented as Docker containers, and their orchestration is performed from the Edge computing nodes up to Fog and Cloud servers in the geographic vicinity of moving IoT devices. A car equipped with a Motorhome Artificial Intelligence Communication Hardware (MACH) system as an Edge node connected to several Fog and Cloud computing servers was used for testing. Compared to using a fixed centralized Cloud provider, the service response time provided by our proposed capillary computing architecture was almost four times faster according to the 99th percentile value along with a significantly smaller standard deviation, which represents a high QoS.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3