Edge Offloading in Smart Grid

Author:

Arcas Gabriel Ioan1ORCID,Cioara Tudor2ORCID,Anghel Ionut2ORCID,Lazea Dragos2ORCID,Hangan Anca2ORCID

Affiliation:

1. Bosch Engineering Center, Cluj-Napoca, Constanța 30-34, 400158 Cluj-Napoca, Romania

2. Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania

Abstract

The management of decentralized energy resources and smart grids needs novel data-driven low-latency applications and services to improve resilience and responsiveness and ensure closer to real-time control. However, the large-scale integration of Internet of Things (IoT) devices has led to the generation of significant amounts of data at the edge of the grid, posing challenges for the traditional cloud-based smart-grid architectures to meet the stringent latency and response time requirements of emerging applications. In this paper, we delve into the energy grid and computational distribution architectures, including edge–fog–cloud models, computational orchestration, and smart-grid frameworks to support the design and offloading of grid applications across the computational continuum. Key factors influencing the offloading process, such as network performance, data and Artificial Intelligence (AI) processes, computational requirements, application-specific factors, and energy efficiency, are analyzed considering the smart-grid operational requirements. We conduct a comprehensive overview of the current research landscape to support decision-making regarding offloading strategies from cloud to fog or edge. The focus is on metaheuristics for identifying near-optimal solutions and reinforcement learning for adaptively optimizing the process. A macro perspective on determining when and what to offload in the smart grid is provided for the next-generation AI applications, offering an overview of the features and trade-offs for selecting between federated learning and edge AI solutions. Finally, the work contributes to a comprehensive understanding of edge offloading in smart grids, providing a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis to support cost–benefit analysis in decision-making regarding offloading strategies.

Funder

European Union’s Horizon Europe research and innovation program

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3