The Al-Fe Intermetallic Compounds and the Atomic Diffusion Behavior at the Interface of Aluminum-Steel Welded Joint

Author:

Zhang Yinglong1,Zhao Tianxiang2,Yu Xiaoquan3,Huang Jiankang2ORCID

Affiliation:

1. Gansu Province Special Equipment Inspection and Testing Institute, Lanzhou 730050, China

2. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

3. Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou 318000, China

Abstract

The formation of intermetallic compounds (IMC) at the Al/Fe interface determined the mechanical property of steel-aluminum welded joint. To understand the interfacial microstructure evolution and relate diffusion mechanism of atoms cross the Al/Fe interface, the effect of welding parameters on the interfacial IMC was studied, and the molecular dynamics method (MD) was used to simulate the diffusion process of Al and Fe atoms. Four temperatures (950 K, 1000 K, 1050 K, and 1100 K) were selected in the simulation model. The interfacial IMC are distributed in a laminar pattern, and their physical phases are mainly composed of Fe2Al5, controlling the Al/Fe atomic ratio of 5:2 in the IMC configuration, the Embedded Atom Method (EAM) potential is used to describe the interactions between Al and Fe atoms. In the Al-Fe system IMC conformation, the mean square displacement and diffusion (MSD) coefficient of Al atoms at different temperatures were small, and the main diffusion path is the Al atoms across the IMC conformation into the Fe crystal structure. The diffusion in the IMC conformation was mainly along the direction perpendicular to the interface. The diffusion mechanisms were mainly vacancy diffusion and interstitial diffusion mechanisms.

Funder

Project of the State Administration for Market Regulation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3