Joining of Aluminum Alloy AA7075 and Titanium Alloy Ti-6Al-4V through a Friction Stir Welding-Based Process

Author:

Dias Francisco1,Cipriano Gonçalo2ORCID,Correia Arménio N.1ORCID,Braga Daniel F. O.2ORCID,Moreira Pedro2ORCID,Infante Virgínia3

Affiliation:

1. Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

2. Institute of Mechanical Engineering and Industrial Management (INEGI), 4200-465 Porto, Portugal

3. LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

Abstract

Combining dissimilar parts has become imperative for developing the structures based on lightweight materials, such as metal alloys, polymers or polymer matrix composites, and this has become one of the solutions to reverse the current trend of CO2 emissions in the transport sector. However, given the usual property disparities, joining dissimilar materials in multi-material and multi-purpose structures raises new engineering challenges. Advanced joining processes, such as friction stir welding (FSW), have emerged and have been applied across several sectors as a promising alternative to conventional joining processes, such as mechanical fastening or adhesive bonding. In the present work, and in order to avoid the development of intermetallic compounds (IMCs), a different approach from the conventional technique of friction stir welding was applied to the production of dissimilar overlapping joints. These dissimilar joints were fabricated using a high strength aluminum alloy (AA7075-T651) and a titanium alloy (Ti-6Al-4V), both materials widely used in automotive, aeronautics and space industries. To perform a systematic investigation, the Taguchi method was used to determine the process parameter combinations to enable the fabrication of this type of dissimilar joints. The joints were subjected to quasi-static tensile shear tests to assess their mechanical performance and were compared to conventionally riveted joints in different configurations, namely, single and double connection points. The joints produced by the FSW based method showed higher mechanical performance. To assess the local properties, some of the fractured regions of the joints were subjected to hardness assessments, revealing no significant change in the hardness in the tested areas. Finally, a statistical study was performed to analyze the main effects and interactions of the process parameters, to identify their influences on the mechanical performance of the joints.

Funder

FCT, through IDMEC under LAETA

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3