Advancements in the Evolution of Engineering Characteristics and Reinforcement Technologies for Subgrade Silt

Author:

Liu Xiaoyan1,Zhao Jinpeng2,Liu Lulu3

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Highway, Chang’an University, Xi’an 710064, China

3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Technical challenges associated with the treatment of silt subgrades frequently arise in coastal and river delta areas. Given the importance of environmental sustainability, the selection of efficient, cost-effective, and eco-friendly techniques for silt subgrade stabilization is paramount. While recycled polyester fibers primarily sourced from discarded polyester bottles have not yet been systematically employed in silt subgrade reinforcement, their potential is considerable. This paper offers a comprehensive review of the existing literature on the microstructural, physicochemical, and mechanical properties of silt, summarizing prior advancements in silt stabilization methodologies. Building upon this foundation, we introduce a novel approach utilizing recycled polyester fibers for silt subgrade improvement, outlining both its application prospects and challenges, which require further investigation. The findings of this study serve as a robust scientific foundation for the broader adoption and engineering implementation of this technology.

Funder

National Natural Science Foundation of China

Youth Program of the Natural Science Foundation of Jiangsu Province

Open Fund of National Engineering Research Center of Highway Maintenance Technology

Jiangsu Excellent Postdoctoral Program

China Postdoctoral Science Foundation

Young Elite Scientist Sponsorship Program by Cast

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3