Ultrahigh UV Responsivity Quasi-Two-Dimensional BixSn1−xO2 Films Achieved through Surface Reaction

Author:

Xu Zhihao12,Xu Miao123,Chen Fang12,Zhai Rui12,Wu You12,Zhao Zhuan124ORCID,Pan Shusheng124

Affiliation:

1. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China

2. Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China

3. Songshan Lake Materials Laboratory, Dongguan 523808, China

4. Key Lab of Si-Based Information Materials & Devices and Integrated Circuits Design, Department of Education of Guangdong Province, Guangzhou 510006, China

Abstract

In this study, quasi-two-dimensional BixSn1−xO2 (BTO) thin films were fabricated using a liquid metal transfer method. The ultraviolet (UV) photodetector based on BTO thin films was constructed, and the ultrahigh responsivity of 589 A/W was observed at 300 nm UV light illumination. Interestingly, by dropping ethanol during light-off period, the recovery time induced by the persistent photoconductivity (PPC) effect is reduced from 1.65 × 103 s to 5.71 s. Furthermore, the recovery time can also be reduced by dropping methanol, propylene glycol, NaNO2, and Na2SO3 after light termination. The working mechanisms are attributed to the rapid consumption of holes stored in BTO thin films by reaction with those solutions. This work demonstrates that the BTO thin films have potential applications in high-performance UV detectors and present an innovation route to weaken the PPC effects in semiconductors by introducing chemical liquids on their surface.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Key Area R&D Program of Guangzhou

Science and Technology Program of Guangzhou

Key Discipline of Materials Science and Engineering, and the Bureau of Education of Guangzhou

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3