Helicopter Main Rotor Blade Parametric Design for a Preliminary Aerodynamic Analysis Supported by CFD or Panel Method

Author:

Kocjan JakubORCID,Kachel StanisławORCID,Rogólski RobertORCID

Abstract

This work is the preliminary part of a research program which is aimed at finding some new methods and design solutions for helicopter main rotor multidisciplinary optimization. The task was to develop a parametric geometric model of a single-blade main rotor applicable for varied methods of numerical aerodynamic modeling. The general analytical assumptions for the parametric main rotor design were described. The description of the main rotor blade parametric design method based on Open GRIP graphical programming was presented. Then, the parametric model of a blade was used for aerodynamic models independently developed for panel method and advanced CFD solver. The results obtained from the CFD simulations and panel analysis for main rotor aerodynamics were compared and assessed using analytical calculations. The calculations and simulations for a single-blade and completed rotor were performed for different helicopter weights and rotor pitch angles. The results of different computer aerodynamic analysis environments were compared for the possibility of their application in an optimization loop. This is preliminary work that describes only a partial problem that could be used in the future as part of a comprehensive methodology for aerodynamic and structural optimization of a helicopter rotor. As an output of the research, new options for main rotor optimization are developed. The combined parametric modeling with aerodynamic analysis, as described in this paper, provide the preliminary design for a main rotor spiral, as an element of the optimization loop.

Funder

Military University of Technology in Warsaw

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Performance improvement of helicopter rotors through blade redesigning

2. 3D Multidisciplinary Automated Design Optimization Toolbox for Wind Turbine Blades

3. Aeroelastic analysis and structural parametric design of composite rotor blade

4. Practical Considerations in Rotor Design Optimisation;Fitzgibbon;Proceedings of the 47th European Rotorcraft Forum,2021

5. Application of Parametric Airfoil Design for Rotor Performance Improvement;Lim;Proceedings of the 44th European Rotorcraft Forum 2018, ERF 2018,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3