Performance improvement of helicopter rotors through blade redesigning

Author:

Stalewski Wienczyslaw,Zalewski Wieslaw

Abstract

Purpose The purpose of this paper is to determine dependencies between a rotor-blade shape and a rotor performance as well as to search for optimal shapes of blades dedicated for helicopter main and tail rotors. Design/methodology/approach The research is conducted based on computational methodology, using the parametric-design approach. The developed parametric model takes into account several typical blade-shape parameters. The rotor aerodynamic characteristics are evaluated using the unsteady Reynolds-averaged Navier–Stokes solver. Flow effects caused by rotating blades are modelled based on both simplified approach and truly 3D simulations. Findings The computational studies have shown that the helicopter-rotor performance may be significantly improved even through relatively simple aerodynamic redesigning of its blades. The research results confirm high potential of the developed methodology of rotor-blade optimisation. Developed families of helicopter-rotor-blade airfoils are competitive compared to the best airfoils cited in literature. The finally designed rotors, compared to the baselines, for the same driving power, are characterised by 5 and 32% higher thrust, in case of main and tail rotor, respectively. Practical implications The developed and implemented methodology of parametric design and optimisation of helicopter-rotor blades may be used in future studies on performance improvement of rotorcraft rotors. Some of presented results concern the redesigning of main and tail rotors of existing helicopters. These results may be used directly in modernisation processes of these helicopters. Originality/value The presented study is original in relation to the developed methodology of optimisation of helicopter-rotor blades, families of modern helicopter airfoils and innovative solutions in rotor-blade-design area.

Publisher

Emerald

Subject

Aerospace Engineering

Reference39 articles.

1. ANSYS, Inc (2013), “ANSYS FLUENT user’s guide. Release 15.0”, available at: www.ansys.com

2. Brocklehurst, A. (2013), “High Resolution Methods for the Aerodynamic Design of Helicopter Rotors”, PhD Thesis, CFD Laboratory, School of Engineering, Faculty of Science and Engineering, University of Liverpool.

3. A review of helicopter rotor blade tip shapes;Progress in Aerospace Sciences,2013

4. Prediction of helicopter rotor loads using Time-Spectral computational fluid dynamics and an exact Fluid-Structure interface;Journal of the American Helicopter Society,2011

5. Helicopter rotor design using a Time-Spectral and Adjoint-Based method;Journal of Aircraft,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3