Sr and Zr Co-Doped CaCu3Ti4O12 Ceramics with Improved Dielectric Properties

Author:

Yu Yunfei,Wang Qun,Li Yongqing,Rehman Mehtab Ur,Khan Waheed Qamar

Abstract

The dielectric constant of CCTO materials can be as high as 104, which makes it suitable for use in electronic devices but the high dielectric loss limits its application. In this paper, a series of Sr and Zr co-doped CCTO ceramics having the formula Ca0.8Sr0.2Cu3Ti4−xZrxO12 (x = 0.1, 0.2, 0.3, 0.4) were obtained via a solid-state reaction technique. We force the effect of the Zr content on the phase composition, microstructure, cationic valence states, impedance, and dielectric properties of the as-prepared ceramics to reduce dielectric loss. The results demonstrate that Sr and Zr co-doping increases dielectric constant and reduces dielectric loss simultaneously, and the maximum dielectric constant (1.87 × 105, 1 Hz) and minimum dielectric loss (0.43, 102 Hz) are obtained when x = 0.3. Mixed Cu+/Cu2+ and Ti3+/Ti4+ valence states are observed to coexist in the co-doped material lattices, which promote dipole polarization, and thereby increase the dielectric constant of the ceramics. The dielectric properties of the materials are analyzed according to the internal barrier layer capacitance model, which elucidates the contributions of the grains and grain boundaries to dielectric performance. The maximum grain boundary resistance (3.7 × 105 Ω) is obtained for x = 0.3, which contributes toward the minimum dielectric loss (0.43) obtained for this ceramic at a frequency less than 1 kHz. The average grain sizes of the samples decrease with increasing Zr content, which is the primary factor increasing the grain boundary resistance of the co-doped ceramics.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3