Abstract
α-synuclein (α-syn) is a presynaptic, lipid-binding protein strongly associated with the neuropathology observed in Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and Alzheimer’s Disease (AD). In normal physiology, α-syn plays a pivotal role in facilitating endocytosis and exocytosis. Interestingly, mutations and modifications of precise α-syn domains interfere with α-syn oligomerization and nucleation that negatively affect presynaptic vesicular dynamics, protein expressions, and mitochondrial profiles. Furthermore, the integration of the α-syn oligomers into the presynaptic membrane results in pore formations, ion influx, and excitotoxicity. Targeted therapies against specific domains of α-syn, including the use of small organic molecules, monoclonal antibodies, and synthetic peptides, are being screened and developed. However, the prospect of an effective α-syn targeted therapy is still plagued by low permeability across the blood–brain barrier (BBB), and poor entry into the presynaptic axon terminals. The present review proposes a modification of current strategies, which includes the use of novel encapsulation technology, such as lipid nanoparticles, to bypass the BBB and deliver such agents into the brain.
Funder
Research Grants Council of Hong Kong
Innovation and Technology Commission
Subject
Molecular Biology,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献