Improving Mountain Snow and Land Cover Mapping Using Very-High-Resolution (VHR) Optical Satellite Images and Random Forest Machine Learning Models

Author:

Hu J. MichelleORCID,Shean DavidORCID

Abstract

Very-high-resolution (VHR) optical imaging satellites can offer precise, accurate, and direct measurements of snow-covered areas (SCA) with sub-meter to meter-scale resolution in regions of complex land cover and terrain. We explore the potential of Maxar WorldView-2 and WorldView-3 in-track stereo images (WV) for land and snow cover mapping at two sites in the Western U.S. with different snow regimes, topographies, vegetation, and underlying geology. We trained random forest models using combinations of multispectral bands and normalized difference indices (i.e., NDVI) to produce land cover maps for priority feature classes (snow, shaded snow, vegetation, water, and exposed ground). We then created snow-covered area products from these maps and compared them with coarser resolution satellite fractional snow-covered area (fSCA) products from Landsat (~30 m) and MODIS (~500 m). Our models generated accurate classifications, even with limited combinations of available multispectral bands. Models trained on a single image demonstrated limited model transfer, with best results found for in-region transfers. Coarser-resolution Landsat and MODSCAG fSCA products identified many more pixels as completely snow-covered (100% fSCA) than WV fSCA. However, while MODSCAG fSCA products also identified many more completely snow-free pixels (0% fSCA) than WV fSCA, Landsat fSCA products only slightly underestimated the number of completely snow-free pixels. Overall, our results demonstrate that strategic image observations with VHR satellites such as WorldView-2 and WorldView-3 can complement the existing operational snow data products to map the evolution of seasonal snow cover.

Funder

National Aeronautics and Space Administration

United States Bureau of Reclamation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3