Considerations for Assessing Functional Forest Diversity in High-Dimensional Trait Space Derived from Drone-Based Lidar

Author:

Hambrecht LeonardORCID,Lucieer ArkoORCID,Malenovský ZbyněkORCID,Melville Bethany,Ruiz-Beltran Ana Patricia,Phinn StuartORCID

Abstract

Remotely sensed morphological traits have been used to assess functional diversity of forests. This approach is potentially spatial-scale-independent. Lidar data collected from the ground or by drone at a high point density provide an opportunity to consider multiple ecologically meaningful traits at fine-scale ecological units such as individual trees. However, high-spatial-resolution and multi-trait datasets used to calculate functional diversity can produce large volumes of data that can be computationally resource demanding. Functional diversity can be derived through a trait probability density (TPD) approach. Computing TPD in a high-dimensional trait space is computationally intensive. Reductions of the number of dimensions through trait selection and principal component analysis (PCA) may reduce the computational load. Trait selection can facilitate identification of ecologically meaningful traits and reduce inter-trait correlation. This study investigates whether kernel density estimator (KDE) or one-class support vector machine (SVM) may be computationally more efficient in calculating TPD. Four traits were selected for input into the TPD: canopy height, effective number of layers, plant to ground ratio, and box dimensions. When simulating a high-dimensional trait space, we found that TPD derived from KDE was more efficient than using SVM when the number of input traits was high. For five or more traits, applying dimension reduction techniques (e.g., PCA) are recommended. Furthermore, the kernel size for TPD needs to be appropriate for the ecological target unit and should be appropriate for the number of traits. The kernel size determines the required number of data points within the trait space. Therefore, 3–5 traits require a kernel size of at least 7×7pixels. This study contributes to improving the quality of TPD calculations based on traits derived from remote sensing data. We provide a set of recommendations based on our findings. This has the potential to improve reliability in identifying biodiversity hotspots.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3