BDS-3/GPS/Galileo OSB Estimation and PPP-AR Positioning Analysis of Different Positioning Models

Author:

Li Bo,Mi Jinzhong,Zhu HuizhongORCID,Gu Shouzhou,Xu Yantian,Wang Hu,Yang Lijun,Chen Yibiao,Pang Yuqi

Abstract

With the completion of the BeiDou Global Navigation Satellite System (BDS-3), the multi-system precise point positioning ambiguity resolution (PPP-AR) has been realized. The satellite phase fractional cycle bias (FCB) is a key to the PPP-AR. Compared to the combined ionosphere-free (IF) model, the undifferenced and uncombined (UDUC) model retains all the information from the observations and can be easily extended to arbitrary frequencies. However, the FCB is difficult to apply directly to the UDUC model. An observable-specific signal bias (OSB) can interact directly with the original observations, providing complete flexibility for PPP-AR for multi-frequency multi-GNSS. In this study, the OSB product generation for the GPS (G), Galileo (E), and BDS-3 (C) systems is performed using 117 globally distributed multi-GNSS experiment (MGEX) stations, and their performances are evaluated. Then, the PPP-AR comparison and analysis of the two positioning models of the UDUC and IF are conducted. The results show that the stability of OSB products of the three systems is better than 0.05 ns. For the precise point positioning (PPP) ambiguity fixed solution, with comparable positioning accuracy and convergence time to the products of both the Wuhan University (WUM) and the Centre National d’Etudes Spatials (CNES) institutions, an average fixed-ambiguity rate is over 90%. Compared to the PPP float solution, the PPP-AR has the most significant improvement in positioning accuracy in the E-direction. The average improvements in the positioning accuracy under the IF and UDUC models in the static and kinematic modes are higher than 45% and 40%, respectively. The convergence times of the IF and UDUC models are improved on average by 48% and 60% in the static mode and by 40% and 55% in the kinematic mode, respectively. Among the IF and UDUC positioning models, the former has slightly better positioning accuracy and convergence time than the latter for the PPP float solution. However, both models have comparable positioning accuracy and convergence time after the PPP-AR. The GCE multi-system combination is superior to other system combinations. The average convergence time for the static PPP fixed solution is 8.5 min, and the average convergence time for the kinematic PPP fixed solution is 16.4 min.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3