Abstract
This paper presents a novel approach for Multi-Robot Task Allocation (MRTA) that introduces priority policies on preemptive task scheduling and considers dependencies between tasks, and tolerates faults. The approach is referred to as Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF). It considers the interaction between running processes and their tasks for management at each new event, prioritizing the more relevant tasks without idleness and latency. The benefit of this approach is the optimization of production in smart factories, where autonomous robots are being employed to improve efficiency and increase flexibility. The evaluation of MRPF is performed through experimentation in small-scale warehouse logistics, referred to as Augmented Reality to Enhanced Experimentation in Smart Warehouses (ARENA). An analysis of priority scheduling, task preemption, and fault recovery is presented to show the benefits of the proposed approach.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献