Solving a System of Fractional-Order Volterra Integro-Differential Equations Based on the Explicit Finite Difference Approximation via the Trapezoid Method with Error Analysis

Author:

Ahmed Shazad ShawkiORCID

Abstract

The well-known central finite difference approximation was combined with the trapezoid quadrature method in this study to provide a numerical solution of the linear system of Volterra integro-fractional differential equations (LSVI-FDEs) of arbitrary orders, where the fractional derivative is described in the Caputo sense and the orders are between zero and one. The method works by first using the central finite difference approximation to approximate the Caputo derivative at any fixed point and then using the trapezoidal rule to obtain a finite difference expression for our fractional equation, while recalling the linear spline approximation for the first steps. This new, more efficient method involves converting sets of equations and conditions into matrix relationships, from which symmetry matrices can be created in some cases. We also present a new approach for error analysis of the discrete numerical scheme and the explicit numerical technique for LSVI-FDEs. The multi-level explicit finite difference approximation’s stability and convergence were explored, and a MatLab application was created to explain the results. Finally, several numerical examples are offered to demonstrate the technique’s application.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Fractional Differential Equation;Podldubny,1999

2. Geometric and Physical Interpretation of Fractional Integral and Fractional Differentiation;Podlubny;J. Fract. Calc. Appl. Anal.,2002

3. Fractional Integrals and Derivatives: Theory and Applications;Samko,1993

4. Theory and Applications of Fractional Differential Equations;Kilbas,2006

5. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering;Sabatier,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3