On the Correlation of Solar Activity and Troposphere on the GNSS/EGNOS Integrity. Fuzzy Logic Approach

Author:

Krzykowska-Piotrowska KarolinaORCID,Dudek Ewa,Wielgosz PawełORCID,Milanowska Beata,Batalla Jordi MongayORCID

Abstract

There is a noticeable number of studies carried out on both the operational parameters of Global Navigation Satellite System (GNSS) and the satellite signal itself. Researchers look for, inter alia, proven sources of errors affecting the integrity of the satellite signal because this parameter determines the approval of the system’s operational use. It also seems of key importance that the atmospheric conditions, in any area of satellite signal usage, should not be underestimated due to their extensive impact. As the ionospheric refraction seriously limits the operational use of the satellite navigation signal, in this article, the authors attempted to quantify the effect of solar activity (expressed by sunspots) on the signal integrity using fuzzy logic. Fuzzy reasoning is used when information is inaccurate or incomplete and necessitates making decisions under conditions of uncertainty. Thanks to fuzzy sets, there are no obstacles to characterize the degree of intensity of a given phenomenon. In order to look at the problem more broadly, attention was also paid to the tropospheric conditions, and it was verified whether, against the background of cloudiness, precipitation, humidity, pressure and temperature, solar activity affects the integrity to the greatest extent. The integrity measurements from the EGNOS system (PRN120 and PRN126) collected at the monitoring station in Warsaw, Poland in 2014 were used.

Funder

Centre for Priority Research Area Artificial Intelligence and Robotics of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3