Forecasting Parameters of Satellite Navigation Signal through Artificial Neural Networks for the Purpose of Civil Aviation

Author:

Krzykowska Karolina1ORCID,Krzykowski Michał2

Affiliation:

1. Department of Telecommunication in Transport, Faculty of Transport, Warsaw University of Technology, Warsaw 00-662, Poland

2. Department of Civil Law II & Economic Law, Faculty of Law & Administration, University of Warmia and Mazury in Olsztyn, Olsztyn 10-719, Poland

Abstract

Navigation is a key element influencing fluent, rapid, and safe transport of people and goods. During the last years, special attention was paid to satellite navigation, which is a part of radionavigation where positioning is done thanks to artificial satellites. Issues of application and development of satellite navigation systems in civil aviation are the subject of numerous research and scientific studies in the world. The quality of satellite signal determined by parameters such as accuracy, continuity, availability, and integrity determines possibility of its operational use. Particular attention of scientific research is therefore devoted to the requirements and limitations imposed on satellite systems prior to their implementation in aviation. This extremely important aspect justified undertaking of the aforementioned problem in this article. The paper attempts to answer the question on how to facilitate selection of navigation techniques for the aircraft operator, taking into account factors determining the accuracy, continuity, availability, and integrity of the satellite signal. As a result, the purpose of the work was defined as development of a method for forecasting the values of satellite navigation signal parameters used in air transport by artificial neural networks, taking into account selected atmospheric conditions. Results included in the work indicate further directions of satellite navigation system development. Due to authors’ opinion, the researches should focus especially on the analysis of real-time satellite signal parameter performance or creating applications for UAVs automatically deciding about used techniques of navigation.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3