Biomass-Derived Carbons as Versatile Materials for Energy-Related Applications: Capacitive Properties vs. Oxygen Reduction Reaction Catalysis

Author:

Breitenbach StefanORCID,Gavrilov Nemanja,Pašti IgorORCID,Unterweger ChristophORCID,Duchoslav Jiri,Stifter David,Hassel Achim Walter,Fürst ChristianORCID

Abstract

Biomass-derived carbons are very attractive materials due to the possibility of tuning their properties for different energy-related applications. Various pore sizes, conductivities and the inherent presence of heteroatoms make them attractive for different electrochemical reactions, including the implementation of electrochemical capacitors or fuel cell electrodes. This contribution demonstrates how different biomass-derived carbons prepared from the same precursor of viscose fibers can reach appreciable capacitances (up to 200 F g−1) or a high selectivity for the oxygen reduction reaction (ORR). We find that a highly specific surface area and a large mesopore volume dominate the capacitive response in both aqueous and non-aqueous electrolytic solutions. While the oxygen reduction reaction activity is not dominated by the same factors at low ORR overpotentials, these take the dominant role over surface chemistry at high ORR overpotentials. Due to the high selectivity of the O2 reduction to peroxide and the appreciable specific capacitances, it is suggested that activated carbon fibers derived from viscose fibers are an attractive and versatile material for electrochemical energy conversion applications.

Funder

European Regional Development Fund

Serbian Ministry of Education, Science and Technological Development

Publisher

MDPI AG

Subject

General Medicine

Reference42 articles.

1. What Are Batteries, Fuel Cells, and Supercapacitors?

2. Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications;Bruno,2014

3. Nanomaterials Synthesis: Design, Fabrication and Applications;Gaddam,2019

4. An overview of carbon materials for flexible electrochemical capacitors

5. One-dimensional nitrogen-containing carbon nanostructures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3