Exploring the Impact of DAHP Impregnation on Activated Carbon Fibers for Efficient Charge Storage and Selective O2 Reduction to Peroxide

Author:

Gavrilov Nemanja1ORCID,Breitenbach Stefan23ORCID,Unterweger Christoph2ORCID,Fürst Christian2ORCID,Pašti Igor A.1ORCID

Affiliation:

1. University of Belgrade—Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia

2. Wood K Plus—Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria

3. Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria

Abstract

Understanding the properties and behavior of carbon materials is of paramount importance in the pursuit of sustainable energy solutions and technological advancements. As versatile and abundant resources, carbon materials play a central role in various energy conversion and storage applications, making them essential components in the transition toward a greener and more efficient future. This study explores the impact of diammonium hydrogen phosphate (DAHP) impregnation on activated carbon fibers (ACFs) for efficient energy storage and conversion applications. The viscose fibers were impregnated with varying DAHP concentrations, followed by carbonization and activation processes. The capacitance measurements were conducted in 6 mol dm−3 KOH, 0.5 mol dm−3 H2SO4, and 2 mol dm−3 KNO3 solutions, while the oxygen reduction reaction (ORR) measurements were performed in O2-saturated 0.1 mol dm−3 KOH solution. We find that the presented materials display specific capacitances up to 160 F g−1 when the DAHP concentration is in the range of 1.0 to 2.5%. Moreover, for the samples with lower DAHP concentrations, highly selective O2 reduction to peroxide was achieved while maintaining low ORR onset potentials. Thus, by impregnating viscose fibers with DAHP, it is possible to tune their electrochemical properties while increasing the yield, enabling the more sustainable and energy-efficient synthesis of advanced materials for energy conversion applications.

Funder

COMET Programme

Serbian Ministry of Education, Science, and Technological Development

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3