A Rapid Self-Supervised Deep-Learning-Based Method for Post-Earthquake Damage Detection Using UAV Data (Case Study: Sarpol-e Zahab, Iran)

Author:

Takhtkeshha Narges,Mohammadzadeh AliORCID,Salehi BahramORCID

Abstract

Immediately after an earthquake, rapid disaster management is the main challenge for relevant organizations. While satellite images have been used in the past two decades for building-damage mapping, they have rarely been utilized for the timely damage monitoring required for rescue operations. Unmanned aerial vehicles (UAVs) have recently become very popular due to their agile deployment to sites, super-high spatial resolution, and relatively low operating cost. This paper proposes a novel deep-learning-based method for rapid post-earthquake building damage detection. The method detects damages in four levels and consists of three steps. First, three different feature types—non-deep, deep, and their fusion—are investigated to determine the optimal feature extraction method. A “one-epoch convolutional autoencoder (OECAE)” is used to extract deep features from non-deep features. Then, a rule-based procedure is designed for the automatic selection of the proper training samples required by the classification algorithms in the next step. Finally, seven famous machine learning (ML) algorithms—including support vector machine (SVM), random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), decision trees (DT), k-nearest neighbors (KNN), and adaBoost (AB)—and a basic deep learning algorithm (i.e., multi-layer perceptron (MLP)) are implemented to obtain building damage maps. The results indicated that auto-training samples are feasible and superior to manual ones, with improved overall accuracy (OA) and kappa coefficient (KC) over 22% and 33%, respectively; SVM (OA = 82% and KC = 74.01%) was the most accurate AI model with a slight advantage over MLP (OA = 82% and KC = 73.98%). Additionally, it was found that the fusion of deep and non-deep features using OECAE could significantly enhance damage-mapping efficiency compared to those using either non-deep features (by an average improvement of 6.75% and 9.78% in OA and KC, respectively) or deep features (improving OA by 7.19% and KC by 10.18% on average) alone.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3