A Comparative Study of Texture and Convolutional Neural Network Features for Detecting Collapsed Buildings After Earthquakes Using Pre- and Post-Event Satellite Imagery

Author:

Ji Min,Liu LanfaORCID,Du Runlin,Buchroithner Manfred F.ORCID

Abstract

The accurate and quick derivation of the distribution of damaged building must be considered essential for the emergency response. With the success of deep learning, there is an increasing interest to apply it for earthquake-induced building damage mapping, and its performance has not been compared with conventional methods in detecting building damage after the earthquake. In the present study, the performance of grey-level co-occurrence matrix texture and convolutional neural network (CNN) features were comparatively evaluated with the random forest classifier. Pre- and post-event very high-resolution (VHR) remote sensing imagery were considered to identify collapsed buildings after the 2010 Haiti earthquake. Overall accuracy (OA), allocation disagreement (AD), quantity disagreement (QD), Kappa, user accuracy (UA), and producer accuracy (PA) were used as the evaluation metrics. The results showed that the CNN feature with random forest method had the best performance, achieving an OA of 87.6% and a total disagreement of 12.4%. CNNs have the potential to extract deep features for identifying collapsed buildings compared to the texture feature with random forest method by increasing Kappa from 61.7% to 69.5% and reducing the total disagreement from 16.6% to 14.1%. The accuracy for identifying buildings was improved by combining CNN features with random forest compared with the CNN approach. OA increased from 85.9% to 87.6%, and the total disagreement reduced from 14.1% to 12.4%. The results indicate that the learnt CNN features can outperform texture features for identifying collapsed buildings using VHR remotely sensed space imagery.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3