An Improved Iterative Reweighted STAP Algorithm for Airborne Radar

Author:

Cui WeichenORCID,Wang Tong,Wang Degen,Liu Cheng

Abstract

In recent years, sparse recovery-based space-time adaptive processing (SR-STAP) technique has exhibited excellent performance with insufficient samples. Sparse Bayesian learning algorithms have received considerable attention for their remarkable and reliable performance. Its implementation in large-scale radar systems is however hindered by the overwhelming computational load and slow convergence speed. This paper aims to address these drawbacks by proposing an improved iterative reweighted sparse Bayesian learning algorithm based on expansion-compression variance-components (ExCoV-IIR-MSBL). Firstly, a modified Bayesian probabilistic model for SR-STAP is introduced. Exploiting the intrinsic sparsity prior of the clutter, we divide the space-time coefficients into two parts: the significant part with nontrivial coefficients and the irrelevant part with small or zero coefficients. Meanwhile, we only assign independent hyperparameters to the coefficients in the significant part, while the remaining coefficients share a common hyperparameter. Then the generalized maximum likelihood (GML) criterion is adopted to classify the coefficients, ensuring both accuracy and efficiency. Hence, the parameter space in Bayesian inference will be significantly reduced, and the computational efficiency can be considerably promoted. Both theoretical analysis and numerical experiments validate that the proposed algorithm achieves superior performance with considerably improved computational efficiency in sample shortage scenarios.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Theory of Adaptive Radar;Brennan;IEEE Trans. Aerosp. Electron. Syst.,1973

2. Klemm, R. (2002). Principles of Space-Time Adaptive Processing, The Institution of Electrical Engineers.

3. Guerci, J.R. (2003). Space-Time Adaptive Processing for Radar, Artech House.

4. Rapid Convergence Rate in Adaptive Arrays;Reed;IEEE Trans. Aerosp. Electron. Syst.,1974

5. Reduced-rank adaptive filtering;Goldstein;IEEE Trans. Signal Process.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3