Abstract
Currently, most deep learning (DL)-based models for precipitation forecasting face two conspicuous issues: the smoothing effect in the precipitation field and the degenerate effect of forecasting precipitation intensity. Therefore, this study proposes “time series residual convolution (TSRC)”, a DL-based convolutional neural network for precipitation nowcasting over China with a lead time of 3 h. The core idea of TSRC is it compensates the current local cues with previous local cues during convolution processes, so more contextual information and less uncertain features would remain in deep networks. We use four years’ radar echo reflectivity data from 2017 to 2020 for model training and one year’s data from 2021 for model testing and compare it with two commonly used nowcasting models: optical flow model (OF) and UNet. Results show that TSRC obtains better forecasting performances than OF and UNet with a relatively high probability of detection (POD), low false alarm rate (FAR), small mean absolute error (MAE) and high structural similarity index (SSIM), especially at longer lead times. Meanwhile, the results of two case studies suggest that TSRC still introduces smoothing effects and slightly outperforms UNet at longer lead times. The most considerable result is that our model can forecast high-intensity radar echoes even for typhoon rainfall systems, suggesting that the degenerate effect of forecasting precipitation intensity can be improved by our model. Future works will focus on the combination of multi-source data and the design of the model’s architecture to gain further improvements in precipitation short-term forecasting.
Funder
GuangDong Basic and Applied Basic Research Foundation
Natural Science Foundation of China
China Postdoctoral Science Foundation
Guangxi Key R&D Program
Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory
High-level Talent Program
Subject
General Earth and Planetary Sciences
Reference56 articles.
1. Ehsani, M.R., Zarei, A., Gupta, H.V., Barnard, K., and Behrangi, A. (2021). Nowcasting-Nets: Deep Neural Network Structures for Precipitation Nowcasting Using IMERG. arXiv.
2. Use of NWP for nowcasting convective precipitation: Recent progress and challenges;Sun;Bull. Am. Meteorol. Soc.,2014
3. The quiet revolution of numerical weather prediction;Bauer;Nature,2015
4. Scientific challenges of convective-scale numerical weather prediction;Yano;Bull. Am. Meteorol. Soc.,2018
5. Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology;Germann;Mon. Weather. Rev.,2002
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献