Enhancing Solar Energy Forecast Using Multi-Column Convolutional Neural Network and Multipoint Time Series Approach

Author:

Kumar AnilORCID,Kashyap YashwantORCID,Kosmopoulos PanagiotisORCID

Abstract

The rapid expansion of solar industries presents unknown technological challenges. A dedicated and suitable energy forecast is an effective solution for the daily dispatching and production of the electricity grid. The traditional forecast technique uses weather and plant parameters as the model information. Nevertheless, these are insufficient to consider problematic weather variability and the various plant characteristics in the actual field. Considering the above facts and inspired by the excellent implementation of the multi-column convolutional neural network (MCNN) in image processing, we developed a novel approach for forecasting solar energy by transforming multipoint time series (MT) into images for the MCNN to examine. We first processed the data to convert the time series solar energy into image matrices. We observed that the MCNN showed a preeminent response under a ground-based high-resolution spatial–temporal image matrix with a 0.2826% and 0.5826% RMSE for 15 min-ahead forecast under clear (CR) and cloudy (CD) conditions, respectively. Our process was performed on the MATLAB deep learning platform and tested on CR and CD solar energy conditions. The excellent execution of the suggested technique was compared with state-of-the-art deep neural network solar forecasting techniques.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3