Bayesian Model Averaging Ensemble Approach for Multi-Time-Ahead Groundwater Level Prediction Combining the GRACE, GLEAM, and GLDAS Data in Arid Areas

Author:

Zhou Ting,Wen Xiaohu,Feng QiORCID,Yu Haijiao,Xi Haiyang

Abstract

Accurate groundwater level (GWL) prediction is essential for the sustainable management of groundwater resources. However, the prediction of GWLs remains a challenge due to insufficient data and the complicated hydrogeological system. In this study, we investigated the ability of the Gravity Recovery and Climate Experiment (GRACE) satellite data, the Global Land Evaporation Amsterdam Model (GLEAM) data, the Global Land Data Assimilation System (GLDAS) data, and the publicly available meteorological data in 1-, 2-, and 3-month-ahead GWL prediction using three traditional machine learning models (extreme learning machine, ELM; support vector machine, SVR; and random forest, RF). Meanwhile, we further developed the Bayesian model averaging (BMA) by combining the ELM, SVR, and RF models to avoid the uncertainty of the single models and to improve the predicting accuracy. The validity of the forcing data and the BMA model were assessed for three GWL monitoring wells in the Zhangye Basin in Northwest China. The results indicated that the applied forcing data could be treated as validated inputs to predict the GWL up to 3 months ahead due to the achieved high accuracy of the machine learning models (NS > 0.55). The BMA model could significantly improve the performance of the single machine learning models. Overall, the BMA model reduced the RMSE of the ELM, SVR, and RF models in the testing period by about 13.75%, 24.01%, and 17.69%, respectively; while it improved the NS by about 8.32%, 16.13%, and 9.67% for 1-, 2-, and 3-month-ahead GWL prediction, respectively. The uncertainty analysis results also verified the reliability of the BMA model in multi-time-ahead GWL predicting. This highlighted the efficiency of the satellite data, satellite-based data, and publicly available data as substitute inputs in machine-learning-based GWL prediction, particularly for areas with insufficient or missing data. Meanwhile, the BMA ensemble strategy can serve as a powerful and reliable approach in multi-time-ahead GWL prediction when risk-based decision making is needed or a lack of relevant hydrogeological data impedes the application of the physical models.

Funder

“Western Light”-Key Laboratory Cooperative Research Cross-Team Project of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3