Warming Has Accelerated the Melting of Glaciers on the Tibetan Plateau, but the Debris-Covered Glaciers Are Rapidly Expanding

Author:

Hu Mingcheng,Zhou GuangshengORCID,Lv Xiaomin,Zhou Li,Wang Xiaoliang,He Xiaohui,Tian Zhihui

Abstract

Glacier changes on the Tibetan Plateau are of great importance for regional climate and hydrology and even global ecological changes. It is urgent to understand the effect of climate warming on both clean and debris-covered glaciers on the Tibetan Plateau. This study used the double RF method and Landsat series images to extract clean glaciers and debris-covered glaciers on the Tibetan Plateau from 1985 to 2020 and analyzed their temporal and spatial changes under the background of climate change. The total area of glaciers on the Tibetan Plateau showed a retreating trend from 1985 to 2020, with an average retreat rate of −0.5 % yr−1. The area of clean glaciers showed a significant retreating trend, with a retreat rate of −0.55 % yr−1. The area of debris-covered glaciers showed an expanding trend, with an expanding rate of 0.62 % yr−1. The clean glaciers retreated faster in the southeast and slower in the northwest, while the debris-covered glaciers expanded in most basins. The debris-covered glaciers were generally located at lower elevation areas than those of the clean glaciers. The slopes of clean glaciers were mainly in the range of 0–50°, while the slopes of debris-covered glaciers were mainly in the range of 0–30°. Climate warming was a main driver of glacier change. The clean glacier area was correlated negatively with average temperature in summer and positively with average precipitation in winter, while the debris-covered glacier area was correlated positively with both. The results of the study may provide a basis for scientific management of glaciers on the Tibetan Plateau in the context of climate warming.

Funder

the Second Tibetan Plateau Comprehensive Research Project

National Natural Science Foundation of China

Fundamental Research Funds of the Chinese Academy of Meteorological Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3