Forest Height Inversion Based on Time–Frequency RVoG Model Using Single-Baseline L-Band Sublook-InSAR Data

Author:

Wang Lei,Zhou Yushan,Shen Gaoyun,Xiong Junnan,Shi Hongtao

Abstract

The interferometric synthetic aperture radar (InSAR) technique based on time–frequency (TF) analysis has great potential for mapping the forest canopy height model (CHM) at regional and global scales, as it benefits from the additional InSAR observations provided by the sublook decomposition. Meanwhile, due to the wider swath and higher spatial resolution of single-polarization data, InSAR has a higher observation efficiency in comparison with PolInSAR. However, the accuracy of the CHM inversion obtained by the TF-InSAR method is attenuated by its inaccurate coherent scattering modeling and uncertain parameter calculation. Hence, a new approach for CHM estimation based on single-baseline InSAR data and sublook decomposition is proposed in this study. With its derivation of the coherent scattering modeling based on the scattering matrix of sublook observations, a time–frequency based random volume over ground (TF-RVoG) model is proposed to describe the relationship between the sublook coherence and the forest biophysical parameters. Then, a modified three-stage method based on the TF-RVoG model is used for CHM retrieval. Finally, the two-dimensional (2-D) ambiguous error of pure volume coherence caused by residual ground scattering and temporal decorrelation is alleviated in the complex unit circle. The performance of the proposed method was tested with airborne L-band E-SAR data at the Krycklan test site in Northern Sweden. Results show that the modified three-stage method provides a root-mean-square error (RMSE) of 5.61 m using InSAR and 14.3% improvement over the PolInSAR technique with respect to the classical three-stage inversion result. An inversion accuracy of RMSE = 2.54 m is obtained when the spatial heterogeneity of CHM is considered using the proposed method, demonstrating a noticeable improvement of 32.8% compared with results from the existing method which introduces the fixed temporal decorrelation factor.

Funder

National Natural Science Foundation of China

China Post-Doctoral Program for Innovative Talents

China Post-Doctoral Science Foundation

Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

1. Aster capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the sultanate of oman;Rajendran;Ore Geol. Rev.,2019

2. Large-scale biomass classification in boreal forests with tandem-x data;Caicoya;IEEE Trans. Geosci. Remote Sens.,2016

3. The biomass mission: Mapping global forest biomass to better understand the terrestrial carbon cycle;Quegan;Remote Sens. Environ.,2011

4. Mette, T. (2005, January 17–21). Performance of forest biomass estimation from pol-insar and forest allometry over temperate forests. Proceedings of the POLInSAR 2005, Frascati, Italy.

5. Assessing performance of l- and p-band polarimetric interferometric sar data in estimating boreal forest above-ground biomass;Neumann;IEEE Trans. Geosci. Remote Sens.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3