Performance Assessment of Multi-GNSS Real-Time Products from Various Analysis Centers

Author:

Yu Chao,Zhang Yize,Chen JunpingORCID,Chen Qian,Xu Kexin,Wang Bin

Abstract

The performance of real-time precise point positioning (PPP) relies primarily on the availability and quality of orbit and clock corrections. In this research, we collected data streams from 12 real-time mount points of IGS Real-Time Service (RTS) or analysis centers for a one-month period and conducted a performance assessment, including product latency and data availability, accuracy of orbit, clock and positioning performance. The epoch availability of GPS, GLONASS, Galileo and BDS was more than 98.5%, 95.79%, 94.20% and 85.9%, respectively. In addition, the orbit and clock errors of different real-time corrections was investigated. Then, PPP in static and kinematic for 16 IGS stations was conducted. The results show the real-time PPP for different products has a longer convergence time and a slightly worse accuracy than those of the post-processing PPP. For static PPP over 24 h, the real-time products of WHU had the best performance, with a mean RMSE of 1.0 cm in the horizontal and vertical directions and a median convergence time of 12.0 min. The products of CAS had the faster convergence speed due to the shortest product latency. Regarding real-time kinematic PPP for GPS only in an hourly batch, the real-time products of WHU and ESA performed best with a mean RMSE of 10.8 cm and 9.5 cm in the horizontal and vertical directions, respectively. Additionally, the PPP for different real-time products with the multi-GNSS combination obtained higher accuracy than those with GPS only in post-processing or real-time mode, and the PPP with the GPS/GLONASS/Galileo/BDS combination had the fastest convergence speed and best positioning performance. The hourly based kinematic PPP results of CAS, DLR, GFZ and WHU with the GREC combination had positioning errors smaller than 5.2 cm.

Funder

Program of Shanghai Academic/Technology Research Leader

National Natural Science Foundation of China

Key Program of Special Development funds of Zhangjiang National Innovation Demonstration Zone

National Key R&D Program of China

Key R&D Program of Guangdong province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3