Assessing IGS GPS/Galileo/BDS-2/BDS-3 phase bias products with PRIDE PPP-AR

Author:

Geng JianghuiORCID,Yang Songfeng,Guo Jiang

Abstract

AbstractAmbiguity Resolution in Precise Point Positioning (PPP-AR) is important to achieving high-precision positioning in wide areas. The International GNSS (Global Navigation Satellite System) Service (IGS) and some other academic organizations have begun to provide phase bias products to enable PPP-AR, such as the integer-clock like products by Centre National d’Etudes Spatials (CNES), Wuhan University (WUM) and the Center for Orbit Determination in Europe (CODE), as well as the Uncalibrated Phase Delay (UPD) products by School of Geodesy and Geomatics (SGG). To evaluate these disparate products, we carry out Global Positioning System (GPS)/Galileo Navigation Satellite System (Galileo) and BeiDou Navigation Satellite System (BDS-only) PPP-AR using 30 days of data in 2019. In general, over 70% and 80% of GPS and Galileo ambiguity residuals after wide-lane phase bias corrections fall in ± 0.1 cycles, in contrast to less than 50% for BeiDou Navigation Satellite (Regional) System (BDS-2); moreover, around 90% of GPS/Galileo narrow-lane ambiguity residuals are within ± 0.1 cycles, while the percentage drops to about 55% in the case of BDS products. GPS/Galileo daily PPP-AR can usually achieve a positioning precision of 2, 2 and 6 mm for the east, north and up components, respectively, for all phase bias products except those based on German Research Centre for Geosciences (GBM) rapid satellite orbits and clocks. Due to the insufficient number of BDS satellites during 2019, the BDS phase bias products perform worse than the GPS/Galileo products in terms of ambiguity fixing rates and daily positioning precisions. BDS-2 daily positions can only reach a precision of about 10 mm in the horizontal and 20 mm in the vertical components, which can be slightly improved after PPP-AR. However, for the year of 2020, BDS-2/BDS-3 (BDS-3 Navigation Satellite System) PPP-AR achieves about 50% better precisions for all three coordinate components.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Banville, S., Geng, J., Loyer, S., Schaer, S., Springer, T., & Strasser, S. (2020). On the interoperability of IGS products for precise point positioning with ambiguity resolution. Journal of Geodesy, 94(1), 10

2. Boehm, J., Niell, A. E., Tregoning, P., & Schuh, H. (2006). Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 25(33), L07304

3. Collins, P., Bisnath, S., Lahaye, F., & Héroux, P. (2010). Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation, 57(2), 123–135

4. Dilssner, F., Springer, T., Schönemann, E. & Enderle, W. (2014). Estimation of satellite antenna phase center corrections for BeiDou. In: IGS Workshop 2014, Pasadena, CA, USA, Jun. 23–27

5. Dong, D., & Bock, Y. (1989). Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. Journal of Geophysical Research, 94(B4), 3949–3966

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3