Towards Urban Digital Twins: A Workflow for Procedural Visualization Using Geospatial Data

Author:

Somanath Sanjay1ORCID,Naserentin Vasilis23ORCID,Eleftheriou Orfeas3,Sjölie Daniel4ORCID,Wästberg Beata Stahre1ORCID,Logg Anders2

Affiliation:

1. Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden

2. Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden

3. Department of Electrical and Computer Engineering, Aristotle University, 541 24 Thessaloniki, Greece

4. School of Business, Economics and IT, Division of Informatics, University West, 461 32 Trollhättan, Sweden

Abstract

A key feature for urban digital twins (DTs) is an automatically generated detailed 3D representation of the built and unbuilt environment from aerial imagery, footprints, LiDAR, or a fusion of these. Such 3D models have applications in architecture, civil engineering, urban planning, construction, real estate, Geographical Information Systems (GIS), and many other areas. While the visualization of large-scale data in conjunction with the generated 3D models is often a recurring and resource-intensive task, an automated workflow is complex, requiring many steps to achieve a high-quality visualization. Methods for building reconstruction approaches have come a long way, from previously manual approaches to semi-automatic or automatic approaches. This paper aims to complement existing methods of 3D building generation. First, we present a literature review covering different options for procedural context generation and visualization methods, focusing on workflows and data pipelines. Next, we present a semi-automated workflow that extends the building reconstruction pipeline to include procedural context generation using Python and Unreal Engine. Finally, we propose a workflow for integrating various types of large-scale urban analysis data for visualization. We conclude with a series of challenges faced in achieving such pipelines and the limitations of the current approach. However, the steps for a complete, end-to-end solution involve further developing robust systems for building detection, rooftop recognition, and geometry generation and importing and visualizing data in the same 3D environment, highlighting a need for further research and development in this field.

Funder

Sweden’s Innovation Agency Vinnova

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3