ULG-SLAM: A Novel Unsupervised Learning and Geometric Feature-Based Visual SLAM Algorithm for Robot Localizability Estimation

Author:

Huang Yihan1ORCID,Xie Fei1ORCID,Zhao Jing2,Gao Zhilin1,Chen Jun1,Zhao Fei3,Liu Xixiang4

Affiliation:

1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China

2. The College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

3. The State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310058, China

4. The College of Instrument Science & Engineering, Southeast University, Nanjing 210096, China

Abstract

Indoor localization has long been a challenging task due to the complexity and dynamism of indoor environments. This paper proposes ULG-SLAM, a novel unsupervised learning and geometric-based visual SLAM algorithm for robot localizability estimation to improve the accuracy and robustness of visual SLAM. Firstly, a dynamic feature filtering based on unsupervised learning and moving consistency checks is developed to eliminate the features of dynamic objects. Secondly, an improved line feature extraction algorithm based on LSD is proposed to optimize the effect of geometric feature extraction. Thirdly, geometric features are used to optimize localizability estimation, and an adaptive weight model and attention mechanism are built using the method of region delimitation and region growth. Finally, to verify the effectiveness and robustness of localizability estimation, multiple indoor experiments using the EuRoC dataset and TUM RGB-D dataset are conducted. Compared with ORBSLAM2, the experimental results demonstrate that absolute trajectory accuracy can be improved by 95% for equivalent processing speed in walking sequences. In fr3/walking_xyz and fr3/walking_half, ULG-SLAM tracks more trajectories than DS-SLAM, and the ATE RMSE is improved by 36% and 6%, respectively. Furthermore, the improvement in robot localizability over DynaSLAM is noteworthy, coming in at about 11% and 3%, respectively.

Funder

National Natural Science Foundation of China

State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics

State Key Laboratory of helicopter dynamics

State Key Laboratory of Industrial Control Technology, Zhejiang University

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3