Life Cycle Assessment of Energy Consumption and CO2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future

Author:

Wang Renjie,Song Yuanyuan,Xu Honglei,Li Yue,Liu Jie

Abstract

In order to fulfill the commitment of China to achieve carbon peak by 2030 and carbon neutrality by 2060, all industries have been taking their respective carbon reduction actions. The transportation industry accounts for 11% of CO2 emission of the whole society, and its energy conservation and carbon reduction benefit is of great significance to the national carbon reduction process. New energy vehicles are undoubtedly one of the most important means of carbon emission reduction in the transportation sector. However, electric vehicles still have CO2 emissions, as the fossil fuel use comes from upstream power. To systematically and comprehensively evaluate the CO2 emissions of HEV, PHEV and BEV in the whole process, this study introduces the life-cycle method to research on the past and current situations, and predict future scenarios for ICEV and EV light-duty vehicles at the national and regional levels, by deeply analyzing the generation mix and generating efficiency from the WTT stage, and fuel economy from the TTW stage. The study shows that compared with ICEV, HEV and PHEV could reduce around 30% of CO2 emissions. Currently, BEV could reduce 37% of CO2 emission in the region where the proportion of coal-fired power is high, and 90% of CO2 emission in the region where the proportion of hydro power is high. This study discusses the impact of the proportion of renewable energy application on the carbon emissions from electric vehicles, analyzes the environmental benefits of promoting electric vehicles in different regions, and lays a foundation for the promotion strategy of electric vehicles for different regions in the future.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3