Olive Pomace-Derived Carbon Materials—Effect of Carbonization Pressure under CO2 Atmosphere

Author:

Howaniec

Abstract

The valorization of waste and by-products from various industrial activities is a must in our world of depleting natural resources and increasing volume of environmentally negative waste materials. The economic utilization of solid biowaste involves predominantly its use as a carbon-neutral energy resource or a precursor of porous carbon materials, with a potential application range including sorption processes, energy storage, and electric engineering. With the considerable number of lignocellulosic residues tested and applied as the most suitable porous material precursors, such as woods, shells, stones, peels, husks, and stalks of various crop plants, there is still space and need for further developments in the valorization of high amounts of other types of biowaste. Here, the olive pomace was considered because of both the vast volume and the environmentally undesired (when stored) phytotoxic effect of its components. While the literature on chemical (acidic and alkali treatment) and physical activation (temperature, carbon dioxide, and/or steam) of various biowaste precursors is considerable, the effects of pressure in the carbonization step are reported rarely, although the results observed are promising. The same applies to reports on the application of olive pomace for porous materials production, which indicate that olive pomace currently seems to be underestimated as a carbon materials precursor. In the study presented, the combined effects of pressure (0.1–3 MPa), temperature (800 °C), and carbon dioxide atmosphere in the carbonization of olive pomace were assessed on the basis of qualitative and quantitative data on micro- and mesoporosity of the carbon materials produced. The results showed the positive effect of increasing the process pressure on the development of a porous structure, and particularly, on the development of supermicropores and ultramicropores under the carbonization conditions applied. Carbon material with the most developed porous structure and the highest share of micropores was obtained under the maximum pressure tested.

Funder

Ministry of Science and Higher Education, Poland

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3