Wheat TaTIP4;1 Confers Enhanced Tolerance to Drought, Salt and Osmotic Stress in Arabidopsis and Rice

Author:

Wang Yan,Zhang Yaqi,An Yinchao,Wu Jingyuan,He Shibin,Sun Lirong,Hao Fushun

Abstract

Tonoplast aquaporins (intrinsic proteins, TIPs) have been indicated to play important roles in plant tolerance to water deficit and salinity. However, the functions of wheat TIPs in response to the stresses are largely unknown. In this study, we observed that transgenic plants overexpressing wheat TaTIP4;1 in Arabidopsis and rice displayed clearly enhanced seed germination and seedling growth under drought, salt and osmotic stress. Compared with wild type plants, Arabidopsis and rice overexpression lines had heightened water contents, reduced leaf water loss, lowered levels of Na+, Na+/K+, H2O2 and malondialdehyde, and improved activities of catalase and/or superoxide dismutase, and increased accumulation of proline under drought, salinity and/or osmotic stresses. Moreover, the expression levels of multiple drought responsive genes clearly elevated upon water dehydration, and the transcription of some salt responsive genes was markedly induced by NaCl treatment in the overexpression lines. Also, the yeast cells containing TaTIP4;1 showed increased tolerance to NaCl and mannitol, and mutation in one of three serines of TaTIP4;1 caused decreased tolerance to the two stresses. These results suggest that TaTIP4;1 serves as an essential positive regulator of seed germination and seedling growth under drought, salt and/or osmotic stress through impacting water relations, ROS balance, the accumulation of Na+ and proline, and stimulating the expression of dozens of stress responsive genes in Arabidopsis and rice. Phosphorylation may modulate the activity of TaTIP4;1.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3