Abstract
Gwadar is essential to Pakistan’s financial stability. Being the third deep-water port in Pakistan, it plays a significant role in trade between the Gulf States, Africa, UAE, and CARs. The load shedding of 12–16 h in Gwadar is the most concerning issue due to the non-availability of a utility grid, which is why the Pakistan imports 70 MW of electricity from Iran to fulfill Gwadar’s electricity needs. Gwadar has renewable energy resources that can be utilized for electricity generation. However, wind and solar systems were only installed for limited residential areas. Considering this scenario, a technological and economic analysis was performed using the Hybrid Optimization Model for Multiple Energy Resources (HOMER) software. Three models were considered in this study. Model 1 consisted of photovoltaic (PV) cells, wind turbines, converters, and batteries. Model 2 consisted of PV cells, wind turbines, converters, and a grid. Model 3 consisted of PV cells, wind turbines, converters, and diesel generators. The annual energy generated by Model 1, Model 2, and Model 3 was respectively 57.37 GWh, 81.5 GWh, and 30.4 GWh. The Levelized Cost of Electricity (LCOE) for Model 1, Model 2, and Model 3 was respectively USD 0.401/kWh, USD 0.0347/kWh, and USD 0.184/kWh. The simple payback period of Model 1 was 6.70 years, the simple payback period of Model 2 was 7.77 years and the simple payback period of Model 3 was 4.98 years. Because Model 3 had the lowest Net Present Cost NPC, its payback period was also less than those of the other two. However, Model 2 had the lowest LCOE and its renewable fraction was 73.3%. These facts indicate that Model 2 is the optimal solution.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献