Effects of Exogenous Bacterial Agents on Material Transformation and Microbial Community Composition during Composting of Tomato Stalks

Author:

Li Yang,Zhang Guanzhi,Xu Peng,Zhou Shun,Li Yan,Ma Liyuan,Yang Zhenchao,Wu Yongjun

Abstract

Tomato stems can pollute the environment and also cause resource costs. In this study, five combinations of microbial agents were added to tomato stems for aerobic composting to find effective microbial formulations to improve composting performance and product quality through comparative analysis. Six treatments were set up: T1 (Microbial agents A), T2 (0.5% Microbial agents B), T3 (0.5% Microbial agents C), T4 (0.5% Microbial agents D), T5 (0.5% Microbial agents E) and T6 (no addition). The physicochemical parameters of the composting system were measured, and the dynamics of the microbial community during the composting process were studied using high-throughput sequencing technology. The results showed that the T1 treatment had a longer high-temperature period than T6 and the highest cellulose degradation rate (62.0%). The contents of total phosphorus (TP), total potassium (TK) and effective potassium (AK) were 8.11 g·kg−1, 53.98 g·kg−1 and 45.62 g·kg−1, respectively, at the end of composting, representing increases of 270.3%, 56.6% and 25.40% compared to the initial values, significantly higher than the control (p < 0.05). The Chao1 and Shannon indexes of T1 treatment were 73.5% and 41.7% higher in the compost decay stage for bacteria, and 50.2% and 18.1% for fungi, significantly higher than in T6 (p < 0.05) compared to the initial values. During the high-temperature phase, the abundance of Aspergillus increased (4.13% to 44.24%) the abundance of Staphylococcus decreased (58.31% to 8.90%). In terms of numbers and species diversity, bacterial communities were more abundant than fungal communities. Proteobacteria, Firmicutes, Actinomycetes and Bacteroides were the four main bacterial phyla, while Ascomycetes was the absolutely dominant fungal phylum. In conclusion, the addition of microbial agent A can effectively improve the nutrient content of tomato stem compost, promote the maturation of compost, and regulate the microbial community structure and can realize the resource utilization of tomato stems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3