Brown sugar as a carbon source can make agricultural organic waste compost enter the secondary thermophilic stage and promote compost decomposition

Author:

Xu Peng1,Li Xue1,Zhao Shiwen1,Shu Luolin1,Zhang Guanzhi1,Wu Yongjun1,Yang Zhenchao1

Affiliation:

1. North West Agriculture and Forestry University

Abstract

Abstract The utilization of microbial agents can enhance the composting process of agricultural organic waste and enhance the quality of compost products. However, several challenges persist in the composting of such waste, including the limited degradation capacity of the introduced microbial agents and the short duration of the high-temperature phase during composting. To enhance the composting efficiency of agro-organic waste, this study investigated the impact of inoculating tomato straw compost with two microbial agents: ZZ, a complex microbial agent, and EM, a commercial microbial agent. Additionally, 10% brown sugar was added as a carbon source to the compost after the initial high-temperature phase, aiming to assess its effect on the composting process. The findings revealed that compared to the control (CK) group, the ZZ and EM treatments extended the first high-temperature phase by 2 and 1 day, respectively. Furthermore, with the addition of 10% brown sugar, the ZZ and EM treatments remained in the second high-temperature phase for 8 and 7 days, respectively, while the CK treatment had already entered the cooling stage by then. Notably, the inoculation of microbial agents and the addition of brown sugar substantially augmented the activity of lignocellulose-related hydrolases, thereby promoting the degradation of lignocellulose in the ZZ and EM treatment groups. This was confirmed by FTIR analysis, which demonstrated that the addition of microbial agents facilitated the degradation of specific substances, leading to reduced absorbance in the corresponding spectra. XRD analysis further indicated a notable reduction in cellulose crystallinity for both the ZZ (8.00%) and EM (7.73%) treatments. Hence, the incorporation of microbial agents and brown sugar in tomato straw compost effectively enhances the composting process and improves the quality of compost products.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3