PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model

Author:

Ban WenchaoORCID,Shen Liangduo

Abstract

The current serious air pollution problem has become a closely investigated topic in people’s daily lives. If we want to provide a reasonable basis for haze prevention, then the prediction of PM2.5 concentrations becomes a crucial task. However, it is difficult to complete the task of PM2.5 concentration prediction using a single model; therefore, to address this problem, this paper proposes a fully adaptive noise ensemble empirical modal decomposition (CEEMDAN) algorithm combined with deep learning hybrid models. Firstly, the CEEMDAN algorithm was used to decompose the PM2.5 timeseries data into different modal components. Then long short-term memory (LSTM), a backpropagation (BP) neural network, a differential integrated moving average autoregressive model (ARIMA), and a support vector machine (SVM) were applied to each modal component. Lastly, the best prediction results of each component were superimposed and summed to obtain the final prediction results. The PM2.5 data of Hangzhou in recent years were substituted into the model for testing, which was compared with eight models, namely, LSTM, ARIMA, BP, SVM, CEEMDAN–ARIMA, CEEMDAN–LSTM, CEEMDAN–SVM, and CEEMDAN–BP. The results show that for the coupled CEEMDAN–LSTM–BP–ARIMA model, the prediction ability was better than all the other models, and the timeseries decomposition data of PM2.5 had their own characteristics. The data with different characteristics were predicted separately using appropriate models and the final combined model results obtained were the most satisfactory.

Funder

Provincial scientific research fund for basic research

General Projects of Zhoushan Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference33 articles.

1. Human health effects of air pollution;Kampa;Environ. Pollut.,2008

2. The impact of PM2. 5 on the human respiratory system;Xing;J. Thorac. Dis.,2016

3. Estimating Chinese energy-related CO2 emissions by employing a novel discrete grey prediction model;Ding;J. Clean. Prod.,2020

4. Green Bond Index Prediction Based on CEEMDAN-LSTM;Wang;Front. Energy Res.,2022

5. Hybrid Machine Learning Models for Forecasting Surgical Case Volumes at a Hospital;Aravazhi;AI,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3