Short-Term PM2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data

Author:

Kang Junfeng1ORCID,Zou Xinyi1,Tan Jianlin1,Li Jun2,Karimian Hamed13ORCID

Affiliation:

1. School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. Guangdong Science & Technology Infrastructure Center, Guangzhou 510033, China

3. School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

Machine learning is being extensively employed in the prediction of PM2.5 concentrations. This study aims to compare the prediction accuracy of machine learning models for short-term PM2.5 concentration changes and to find a universal and robust model for both hourly and daily time scales. Five commonly used machine learning models were constructed, along with a stacking model consisting of Multivariable Linear Regression (MLR) as the meta-learner and the ensemble of Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM) as the base learner models. The meteorological datasets and historical PM2.5 concentration data with meteorological datasets were preprocessed and used to evaluate the model’s accuracy and stability across different time scales, including hourly and daily, using the coefficient of determination (R2), Root-Mean-Square Error (RMSE), and Mean Absolute Error (MAE). The results show that historical PM2.5 concentration data are crucial for the prediction precision of the machine learning models. Specifically, on the meteorological datasets, the stacking model, XGboost, and RF had better performance for hourly prediction, and the stacking model, XGboost and LightGBM had better performance for daily prediction. On the historical PM2.5 concentration data with meteorological datasets, the stacking model, LightGBM, and XGboost had better performance for hourly and daily datasets. Consequently, the stacking model outperformed individual models, with the XGBoost model being the best individual model to predict the PM2.5 concentration based on meteorological data, and the LightGBM model being the best individual model to predict the PM2.5 concentration using historical PM2.5 data with meteorological datasets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference83 articles.

1. Spatial-Temporal Patterns of PM2.5 Concentrations for 338 Chinese Cities;Ye;Sci. Total Environ.,2018

2. Environmental Political Business Cycles: The Case of PM2.5 Air Pollution in Chinese Prefectures;Cao;Environ. Sci. Policy,2019

3. Trends of PM2.5 Concentrations in China: A Long Term Approach;Fontes;J. Environ. Manag.,2017

4. Fine Particulate Air Pollution and Its Components in Association with Cause-Specific Emergency Admissions;Zanobetti;Environ. Health-Glob.,2009

5. The Impact of PM2.5 on the Human Respiratory System;Xing;J. Thorac. Dis.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3