Dynamic Allocation of Manufacturing Resources in IoT Job Shop Considering Machine State Transfer and Carbon Emission

Author:

Su Xuan,Dong Wenquan,Lu Jingyu,Chen Chen,Ji Weixi

Abstract

The optimal allocation of manufacturing resources plays an essential role in the production process. However, most of the existing resource allocation methods are designed for standard cases, lacking a dynamic optimal allocation framework for resources that can guide actual production. Therefore, this paper proposes a dynamic allocation method for discrete job shop resources in the Internet of Things (IoT), which considers the uncertainty of machine states, and carbon emission. First, a data-driven job shop resource status monitoring framework under the IoT environment is proposed, considering the real-time status of job shop manufacturing resources. A dynamic configuration mechanism of manufacturing resources based on the configuration threshold is proposed. Then, a real-time state-driven multi-objective manufacturing resource optimization allocation model is established, taking machine tool energy consumption and tool wear as carbon emission sources and combined with the maximum completion time. An improved imperialist competitive algorithm (I-ICA) is proposed to solve the model. Finally, taking an actual production process of a discrete job shop as an example, the proposed algorithm is compared with other low-carbon multi-objective optimization algorithms, and the results show that the proposed method is superior to similar methods in terms of completion time and carbon emissions. In addition, the practicability and effectiveness of the proposed dynamic resource allocation method are verified in a machine failure situation.

Funder

the Major Scientific and Technological Innovation Project of Shandong Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3