Production, Application, and Efficacy of Biodefoamers from Bacillus, Aeromonas, Klebsiella, Comamonas spp. Consortium for the Defoamation of Poultry Slaughterhouse Wastewater

Author:

Dlangamandla Cynthia1,Ntwampe Seteno K. O.2,Basitere Moses3,Chidi Boredi S.1ORCID,Okeleye Benjamin I.1ORCID,Mukandi Melody R.1ORCID

Affiliation:

1. Bioresource Engineering Research Group (BioERG), Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa

2. Centre of Excellence for Carbon-Based Fuels, School of Chemical and Minerals Engineering, North West University, P.O. Box 1290, Potchefstroom 2520, South Africa

3. Academic Support Programme for Engineering in Cape Town (ASPECT) & Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch, Cape Town 7700, South Africa

Abstract

Activated sludge (AS) treatment systems’ major limitation is the nuisance foaming at the surface of the aeration basin in wastewater treatment plants (WWTPs). This foam can be stabilized by biofoamers and surfactants in the wastewater to be treated. In order to control foam, synthetic defoamers are used; however, these defoamers are toxic to the environment. This study aimed to optimize the production of biodefoamers by quantifying foam reduction efficiency and foam collapse by the isolate pervasive to poultry slaughterhouse wastewater (PSW). Before their identification and characterization, nine bacterial isolates were isolated and assessed for foam reduction efficiency. These organisms produced minute biodefoamers under various conditions generated on the response surface methodology (RSM). The isolates that produced biodefoamers with high foam reduction efficiency and at a lower foam collapse rate were Bacillus, Aeromonas, Klebsiella, and Commamonas spp. consortia. At 4% (v defoamer/v PSW), the crude defoamers produced by the consortium had 96% foam reduction efficiency at 1.7 mm/s foam collapse rate, which was comparable to 96% foam reduction efficiency and 2.5 mm/s foam collapse rate for active silicone polymer antifoam A/defoamer by Sigma-Aldrich, a synthetic defoamer. At 2.5 mm/s, all of which were achieved at pH 7 and in less than 50 s. The application of the biodefoamer resulted in sludge compacted flocs, with filament protruding flocs observed when a synthetic defoamer was used. The biodefoamer showed the presence of alkane, amine, carboxyl and hydroxyl groups, which indicated a polysaccharide core structure. The 1H NMR analysis further confirmed that the biodefoamers were carbohydrate polymers. This study reports for the first time on the efficiency and comparability of a biodefoamer to a synthetic defoamer.

Funder

Cape Peninsula University of Technology university research fund

National Research Foundation of South Africa (NRF) cost center

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3