Stochastic Final Pit Limits: An Efficient Frontier Analysis under Geological Uncertainty in the Open-Pit Mining Industry

Author:

Jelvez EnriqueORCID,Morales Nelson,Ortiz Julian M.ORCID

Abstract

In the context of planning the exploitation of an open-pit mine, the final pit limit problem consists of finding the volume to be extracted so that it maximizes the total profit of exploitation subject to overall slope angles to keep pit walls stable. To address this problem, the ore deposit is discretized as a block model, and efficient algorithms are used to find the optimal final pit. However, this methodology assumes a deterministic scenario, i.e., it does not consider that information, such as ore grades, is subject to several sources of uncertainty. This paper presents a model based on stochastic programming, seeking a balance between conflicting objectives: on the one hand, it maximizes the expected value of the open-pit mining business and simultaneously minimizes the risk of losses, measured as conditional value at risk, associated with the uncertainty in the estimation of the mineral content found in the deposit, which is characterized by a set of conditional simulations. This allows generating a set of optimal solutions in the expected return vs. risk space, forming the Pareto front or efficient frontier of final pit alternatives under geological uncertainty. In addition, some criteria are proposed that can be used by the decision maker of the mining company to choose which final pit best fits the return/risk trade off according to its objectives. This methodology was applied on a real case study, making a comparison with other proposals in the literature. The results show that our proposal better manages the relationship in controlling the risk of suffering economic losses without renouncing high expected profit.

Funder

Agencia Nacional de Investigación y Desarrollo

FONDEF/CONICYT IDeA I+D 2019

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. SME Mining Engineering Handbook;Hartman,1992

2. Geostatistics Modeling Spatial Uncertainty;Chilès,2012

3. Open Pit Mine Planning and Design, Two Volume Set & CD-ROM Pack;Hustrulid,2013

4. Optimum Design of Open-Pit Mines;Lerchs;Trans. Can. Inst. Min.,1965

5. The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3