Abstract
The delineation of the open-pit mining boundary, particularly in the context of medium to long-term planning, forms the foundation of mining design. However, due to the non-linear and dynamic nature of the economic and technical parameters influencing boundary delineation, determining the optimal mining boundary can be exceedingly challenging. Currently, most boundary optimization methods assume that block parameters remain fixed, which results in enterprises assuming a certain level of risk when facing changes in internal and external conditions. In this regard, this paper introduces the concept of "achievement degree" to reflect the risk associated with the results of boundary design. Using coal prices as an example, this article applies the predicted coal price curve to boundary optimization adjustments by specifying the "achievement degree" requirements for various time periods, thereby facilitating risk-controlled and economically optimal boundary decisions. Taking the illustrative case of an idealized small-scale inclined coal seam open-pit mine, adjustments to the boundary closely track variations in coal prices, further enhancing returns. The results demonstrate that the method proposed in this paper can increase overall revenue by approximately 51.15% within the forecast period, while effectively managing risks.
Funder
the National Natural Science Foundation of China
the 'Jie Bang Gua Shuai' (Take the Lead) of the Key Scientific and Technological Project for Liaoning Province
the Discipline Innovation Team of Liaoning Technical University
Publisher
Public Library of Science (PLoS)