Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface

Author:

Yacob Nor Azizah,Dzulkifli Nor FadhilahORCID,Salleh Siti Nur AlwaniORCID,Ishak AnuarORCID,Pop Ioan

Abstract

The steady three-dimensional rotating flow past a stretching/shrinking surface in water and kerosene-based nanofluids containing single and multi-walled carbon nanotubes (CNTs) is investigated. The governing equations are converted to similarity equations, and then numerically solved using MATLAB software. The impacts of rotational, suction, and nanoparticle volume fraction on the flow and the thermal fields, as well as velocity and temperature gradients at the surface, are represented graphically and are analyzed. Further, the friction factor and the heat transfer rate for different parameters are presented in tables. It is found that the heat transfer rate increases with increasing nanoparticle volume fraction as well as suction parameter in water and kerosene-based nanofluids of single and multi-walled CNTs. However, the increment in the rotating flow parameter decreases the rate of heat transfer. Multi-walled carbon nanotubes and kerosene-based nanofluid contribute to heat transfer rates better than single-walled carbon nanotubes and water-based nanofluid, respectively. A unique solution exists for the stretching surface, while two solutions are obtained for the shrinking surface. Further analysis of their stabilities shows that only one of them is stable over time.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3