Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer

Author:

Khan AsifORCID,Kim Jun-SikORCID,Kim Heung SooORCID

Abstract

A simulation model can provide insight into the characteristic behaviors of different health states of an actual system; however, such a simulation cannot account for all complexities in the system. This work proposes a transfer learning strategy that employs simple computer simulations for fault diagnosis in an actual system. A simple shaft-disk system was used to generate a substantial set of source data for three health states of a rotor system, and that data was used to train, validate, and test a customized deep neural network. The deep learning model, pretrained on simulation data, was used as a domain and class invariant generalized feature extractor, and the extracted features were processed with traditional machine learning algorithms. The experimental data sets of an RK4 rotor kit and a machinery fault simulator (MFS) were employed to assess the effectiveness of the proposed approach. The proposed method was also validated by comparing its performance with the pre-existing deep learning models of GoogleNet, VGG16, ResNet18, AlexNet, and SqueezeNet in terms of feature extraction, generalizability, computational cost, and size and parameters of the networks.

Funder

National Research Foundation of Korea

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3