Fault States Diagnosis of Marine Diesel Engine Valve Based on a Modified VGG16 Transfer Learning Method

Author:

Cai Yijie123,Xu Zhe12,Wen Quan4,Shi Jinni4,Zhong Fei12,Yang Xiaojun12,Yang Jianguo3,Zhou Hongdi12ORCID

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

2. Key Laboratory of Modern Manufacturing Quality Engineering in Hubei Province, Wuhan 430068, China

3. School of Naval Structure, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, China

4. Hubei Communications Technical College, Wuhan 430079, China

Abstract

The marine diesel engine is an important power machine for ships. Traditional machine learning methods for diesel engine fault diagnosis usually require a large amount of labeled training data, and the diagnosis performance may decline when encounters vibrational and environmental interference. A transfer learning convolutional neural network model based on VGG16 is introduced for diesel engine valve leakage fault diagnosis. The acquired diesel engine cylinder head vibration signal is first converted to time domain, frequency domain, and wavelet decomposition images. Secondly, the VGG16 deep convolutional neural network is pretrained using the ImageNet dataset. Subsequently, fine tuning the network based on the pretrained basic parameters and image enhancement methods. Finally, the well-trained model is adopted to train and test the target dataset. In addition, the cosine annealing learning rate setting method is used to make the learning rate close to the global optimal solution. Experimental results show that the proposed method has higher accuracy and better robustness against noise with a small sample dataset than traditional methods and deep learning models. This study not only demonstrates a novel view for the diagnosis of marine diesel engine valve leakage, but also provides an applicable diagnosis method for other similar issues.

Funder

Ministry of Industry and Information Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3