Abstract
To implement a magneto-optic (MO) nondestructive inspection (MONDI) system for robot-based nondestructive inspections, quantitative evaluations of the presence, locations, shapes, and sizes of defects are required. This capability is essential for training autonomous nondestructive testing (NDT) devices to track material defects and evaluate their severity. This study aimed to support robotic assessment using the MONDI system by providing a deep learning algorithm to classify defect shapes from MO images. A dataset from 11 specimens with 72 magnetizer directions and 6 current variations was examined. A total of 4752 phenomena were captured using an MO sensor with a 0.6 mT magnetic field saturation and a 2 MP CMOS camera as the imager. A transfer learning method for a deep convolutional neural network (CNN) was adapted to classify defect shapes using five pretrained architectures. A multiclassifier technique using an ensemble and majority voting model was also trained to provide predictions for comparison. The ensemble model achieves the highest testing accuracy of 98.21% with an area under the curve (AUC) of 99.08% and a weighted F1 score of 0.982. The defect extraction dataset also indicates auspicious results by increasing the training time by up to 21%, which is beneficial for actual industrial inspections when considering fast and complex engineering systems.
Funder
National Research Foundation of Korea, and Ministry of Science and Technology, Republic of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献