Abstract
A mobile robot is a futuristic technology that is changing the industry of automobiles as well as boosting the operations of on-demand services and applications. The navigation capability of mobile robots is a crucial task and one of the complex processes that guarantees moving from a starting position to a destination. To prevent any potential incidents or accidents, navigation must focus on the obstacle avoidance issue. This paper considers the navigation scenario of a mobile robot with a finite number of motion types without global environmental information. In addition, appropriate human decisions on motion types were collected in situations involving various obstacle features, and the corresponding environmental information was also recorded with the human decisions to establish a database. Further, an algorithm is proposed to train a neural network model via supervising learning using the collected data to replicate the human decision-making process under the same navigation scenario. The performance of the neural network-based decision-making method was cross-validated using both training and testing data to show an accuracy level close to 90%. In addition, the trained neural network model was installed on a virtual mobile robot within a mobile robot navigation simulator to interact with the environment and to make the decisions, and the results showed the effectiveness and efficacy of the proposed algorithm.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Suzhou Municipal Science and Technology Bureau
Entrepreneurship and Innovation Plan of Jiangsu Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献